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Beluga is a type-safe functional language. This means, we have a theoretical foundation de-
scribing the type system, including the operational semantics, and we have a safety proof (see [?]).
Beluga is implemented in OCaml and is under active development at McGill.

We begin with some simple examples—similar to the programs one would write in other func-
tional languages such as SML or OCaml. Compared to such more established functional languages,
there are several major differences.

1 Preliminary: Beluga is pure

Beluga is a pure functional language; it has no predefined data types such as integers, reals, strings
or even booleans. One reason is that Beluga is meant to be a prototyping environment for formal
systems and their proofs and it is not intended as a general purpose programming language. Beluga
also does not provide input/output facilities, references, nor exceptions.

2 Defining data-types and functions

Beluga supports defining your own data via data-types. For example, we can define the natural
numbers as follows:

nat : type.
Z : nat.
succ : nat -> nat.

nat is introduced as a new type using the key word type. The type nat has two constructors: z
and succ. They can be used to construct data objects such as z, succ z, succ (succ z), etc. and
we have modelled the natural numbers.

We can also model the booleans: we call the type of booleans here yes_or_no. The type
yes_or_no has two constructors: the constructor yes and the constructor no. These constructors
constitute the values of the type yes_or_no.

yes_or_no : type.
yes : yes_or_no.
no : yes_or_no.
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The next question is, how do we write programs about this data? The first program we write is
a function andalso which behaves like a conjunction on data of type yes_or_no. Let’s look at the
program before discussing it.

rec andalso : [ |- yes_or.no ] -> [ |- yes_or_no ] -> [ |- yes_or_no ] =
fn x => fn y => case x of
| [ I-nol =>1[1I-mno]

| [ I-yes ] =>y

We declare functions (which can be recursive) by using the keyword rec followed by the name
of the function, in this case andalso. Unlike languages such as SML or OCaml, we must specify the
type of the function; in this example the type is [ |- yes_or_no ] -> [ |- yes_or_no ] ->
[ |- yes_or_no ]. The [ + ] describes the fact that we are manipulating data which is closed.
Subsequently, we will see more uses of [ |- ]. For now, it is important to know that data is
embedded into computations via [ /- ] and boxing data implies that this data is a closed value—in
particular, there are no computations embedded in them. We will come back to this shortly.

The body of the function is built by function abstraction and pattern matching. Pattern matching
allows us to inspect, analyze and take apart values of a given type. In the example program above, x
will have type yes_or_no and hence it can have two possible values: either x will evaluateto [ |-
yes 1, then the branch [ |- yes 1 => [ |- no ] will be chosen or x will evaluate to [ |- no ]
and the branch [ |- no ] => y will be chosen.

Since data does not live on the same level as computations, we will need to “unbox” it by writing
[ |- yes ] and [ |- no ] in contrast to simply writing yes and no.

If x evaluates to [ |- yes 1, we will return whatever value y has. If it also evaluated to [ |-
yes 1, we will return [ |- yes ] and otherwise we will return [ |- no ], correctly modelling
logical conjunction.

Let’s look at a recursive program; we want to add two numbers.

rec add : [ |- nat ] -> [ |- nat ] -> [ |- nat ] = fn x => fn y => case x of
' LI-z]1=>y
| [ |-succ N] =>let [ |-R]=add [ I[|-N]yin
[ |- succ R ]
Hence, we define a recursive function add which has type [ |- nat ] => [ |- nat ] -> [

|- nat ]. It means add expects two natural numbers as input and returns a natural number. We
write this function using pattern matching. The base case is straightforward. If x evaluates to
[ |- z ], we simply return y. But if x evaluates to succ N, then we need to call add again. We
will calliton [ |- N ] and y. Note that before calling add we need “box” the number N. Boxing
is necessary to ensure we are working with pure data; unboxing is necessary for inspecting what the
data looks like. We then bind the result of the recursive call add [ |- N] y to the data-variable R,
and rebuild a proper natural number succ R. To return it though, we need to box it. Note, that the
following is illegal:

I[ |- succ N ] =>
[ |- succ (add [ |- N1 y) ]

Under a box (written as [ |- ]) we are only allowed to have data never computation which is
not yet a data-value. Hence, we are always forced to “stage” our computation, i.e. first evaluate the
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recursive call, bind its result (which is a pure data object) to a data-variable and continue building
new data-objects.

Different syntax for different variables We hope we have driven home the point that we are
working with two levels: data and computations. Beluga forces the user to use two different vari-
ables depending on what he wants to denote: capitalized letters such as N denote data-variables;
lower-case letters such as x, y, add denote computation or program variables. Data-variables al-
ways occur inside a box. Program variables never occur inside a box; they stand for any computa-
tion.

Computation-level types in Beluga For now, we have very very simple types: either we have
a user-defined base type such as nat, yes_or_no wrapped in a box, i.e. [ |- nat ] or [ |-
yes_or_no ], or we have functions. So, in general we have the following grammar for computation-
level types.

Data-level Types P ;= nat|yes_or_no]...
Computation-level Types T,S == [ |[-P ]1|T—S

We note there are no tuples in Beluga; this is fine, since we can always write function in a
curried form.

Programming with lists We can also easily define lists in Beluga by defining a type 1ist with
two constructors nil and cons. We will only create lists of natural numbers *.

list : type.
nil : list.
cons : nat -> list -> list.

We can then write a simple function which computes the length of a list by pattern matching on
the structure of lists. As previously, we will stage our computation in such a way that we force the
evaluation of the recursive call and bind its result to the value [ |- R ].

rec length : [ |- list ] -> [ |- nat ] = fn 1 => case 1 of
' T 1-ni1l 1 => [ |-z ]
| [ |- cons HT] =>1let [ |-N] =1ength ([ |-T1J) in [ |- succ N ]

Finally, we show the implementation of a well-known higher-order function map.

recmap : ([ |- nat ] -> [ |-nat ]) > [ |- 1ist ] -> [ |- 1list ] =
fn f => fn 1 => case 1 of
| [ I-nil ] => [ |- nil ]
| [ |l-consHT] =>1let [ |I-R]=+f1[ |- H] in
let [ |-T° ] =map £ [ |- T1] in
[ |- cons R T’ 1]

!Beluga does not support polymorphism; in fact polymorphism is incompatible with the foundation Beluga rests on
and would lead to an inconsistent system. We will discuss the reasons later.



The map function takes a function f of type [ |- nat ] -> [ |- nat ] as a first argument
and a list 1 as a second argument. We then apply f to each element of the list 1. The only small
difficulty arises from the separation of data and computation; for example, when using f we need
to box the data H before passing it to the computation f.

3 Programming with dependent types

So far we have only written simply typed programs. However, simply typed programs do not check
very strong guarantees and we need to catch error cases separately. So, for example the type of the
map function does enforce that the input list and the list we return will have the same length. Let’s
see how we have to modify our definition of lists and our map function to guarantee that given a
list of length N applying map will produce a list of the same length.

3.1 Introduction to programming with dependent types

Lists indexed by their length In general, dependent types allow us to index types by objects;
there are in fact a full range of dependently typed languages out there and they are gaining popu-
larity. Among them are for example: Agda, which supports “full” dependent types; Haskell which
only allows us to index types by other types; and Beluga, which allows us to index types by terms.
But there are several others.

To carry the length of a list as part of the list data-type, we define a type family. Here we
consider lists containing elements of type bool where bool has two constructors, true and false.

% Types
bool: type.
true: bool.
false: bool.

nat: type.

Z: nat.
succ: nat -> nat.

list : nat -> type.
nil : list z.
cons : bool -> list N -> list (succ N).

We can now create some lists as follows:

let 11 = [ |- cons true nil ] ;
let 12 [ |- cons true (cons false nil) ] ;

Some remarks about type reconstruction for data Let’s look at what the type reconstruction
engine will produce as an output. For the first list 11 it for example infers the type 1ist (succ
z). This is of course correct, since indeed we have constructed a list of length 1 and the list we
have constructed only had one element, namely nat. However, let us inspect the result of type
reconstruction more closely.



let 11 : [ |- (list (succ z))] = [ |- cons z mat nill : [ |- (list (succ z))]
===> [ |- cons z nat nil]

We notice that Beluga turned cons nat nil into cons z nat nil! To understand what just
happened, let us look at the definition of cons again.

cons : tp -> list N -> list (succ N).

The type of cons takes in fact not only the element tp and another list of type 1ist N, but it
will also take in the actual N!

When processing the type of cons, type reconstruction will infer the type of the free variables N
and abstract over it. This will result in

cons : {N:mat} tp -> list N -> list (succ N).

which states for every N:nat, given an object T of type tp and a list L of type 1ist N, cons N T L
is a list of length 1ist (succ N). In type theory, the universal quantifier is usually written as TT
N:nat.tp — list N — list (succ N). In our concrete syntax, we write

{N:nat} tp -> list N -> list (succ N).

We refer to N as the implicit argument, because the user does not need to write it explicitly, but
type reconstruction will be to reconstruct it. Any free variable occurring in a type is an implicit
argument.

The general recipe of type reconstruction can be described as follows: If an argument was
implicit when the type of a constructor was declared, then we must omit passing it to the constructor.

Writing the map function Let us now look at the program for the map function:

rec map : ([ |- bool ] -> [ |- bool]l) -> [ |- 1list N ] -> [ |- list N ] =
fn f => fn 1 => case 1 of
| [ I-nil ] => [ |- nil ]
| [ |-cons HT] =>1let [ |-H ] =£f[I|-H] in
let [ |-T ] =map £ [ |- T1] in
[ |- cons H> T’ ]

Not much has in fact changed—except the type of lists used in the definition. We now say map
takes a function of type [ |- bool 1 -> [ |- bool ] and a list of type [ |- (list N)], and
produces a list of type [ |- (list N)]. This is quite astounding. Without changing the actual
program, we suddenly track a much richer property. While what the user wrote did not change, the
program the compiler reconstructed is quite different from the one it reconstructed earlier.

Excursion: type reconstruction for Beluga functions Intuitively, what happens can be ex-
plained in two phases: reconstruction of the type and reconstruction of the program. When we
look at the declared type of map, we notice again that N is free. Hence, type reconstruction will
infer its type and abstract over it.

rec map : {N :: [ |- nat]} ([ |- bool]l -> [ |- bool]l) -> [ |- (list )] -> [ |-
(list M]



The type now states that for all N, given a function of type ([ |- tp 1 -> [ |- tp 1) and a
list of type [ |- list N ], we produce a list of type [ |- list N ]. Since N was free when the
type of map was declared, we must omit passing it whenever we use map.

And indeed, when we make a recursive call to map, we only pass f and the smaller list [ |- T J.
The exact N will be inferred and filled in by the type reconstruction engine.

The function map is then elaborated as follows: we first insert abstractions, called mlam for the
implicit arguments, and then proceed to reconstruct the body of the function. The most interesting
things happen in the case-expression: we split 1 which has type 1ist Nintotwocases:1 = [ |-
nil Jand1l = [ |- cons H T ]. Unlike pattern matching in the simply typed setting, where the
pattern nil will have the same type as the scrutinee 1 (namely a list), we actually learn something
in the dependently typed case: we learn that N must be z. So, pattern matching on dependently-
typed objects refines the types!

Similarly, when pattern matching on [ |- cons H T ], we learn that N = succ N1, since the
type of cons H Tisin fact list (succ N1).

Hence, each branch will carry a refinement substitution, which will tell us how the types are to
be refined. The reconstructed program fragment of the map function then looks as follows:
mlam N => fn £ => fn 1 => case 1 of
| [[ |- nil] : . z=N1] =>

[ I-nil] : [ |- (Qist 2)]

| {Y1 :: [ |- (term nat)1} {Z :: [ |- tpl} {X :: [ |- (1ist Y1)1}
[[ |- cons Y1 ZX] : . succYL=N] =

In the second branch, {Y1 :: [ |- (term nat)]} {Z :: [ |- tpl} {X :: [ |- (1ist Y1)]1}
denote the variables occurring in the pattern cons Y1 Z X. We also note that we inferred the im-
plicit argument Y1 which denotes the length of the list and is passed as an extra argument to cons.

We will not go into more details about how types are reconstructed; this is an interesting prob-
lem which is actively investigated.

Head and tail One benefit of dependently typed programming is that we can naturally rule out
exceptional cases; for example, we’d like to state that the function which returns the head of a list
should only be called on a function which is not nil; or we may say that calling the tail on the
empty list is not meaningful. This leads to the two little functions below:

rec head : [ |- 1list (succ N) 1] -=> [ |- bool ] =
fml=>1let [ |-consH_]=1in [ |- H]

rec tail : [ |- 1list (succ N) ] -> [ |- 1list N ] =
fml=>1let [ |-cons _TJ]=1in [ |- T]

I

The types will enforce that that the function head can only be called on a list with length greater
than 0; similarly, the tail function will expect a list greater than 0 and returns a list whose length
decreased by 1. Note that the use of dependent types eliminates the use of option types which
allow us to express “yes there is a result” and “no there is no meaningful result”. Now, we are ready
to write lots of such functions, such as zipping two lists together.



Type preserving evaluation An interesting use of dependent types is when we implement an
evaluator. Since we don’t know that our expressions are always well-typed, we need to explicitly
check for certain cases. Assume for example an implementation of a big-step semantics, where
we have a rule for a switch: term bool -> term T -> term T -> term T expression, which
evaluates the first branch if T1 is true and the second branch if T1 is false:

| [ |- switch T1 T2 T3 ] =>
(case eval ([ |- T1 1) of
| [ |- result true ] => eval [ |- T2 ]
[ |- result false ] => eval [ |- T3 ]

|
| [ |- result _ 1 => [ |- no_result ]
| T I-_1=>1[ |- no_result ]
)
If we only work with well-typed expressions, we know that the case [ |- result _ ], i.e.

evaluating T1 produced a value which is not a boolean, is impossible. In fact, we know that if
we have a well-typed expression, then evaluation must succeed and return a value. Recall that if an
expression is well-typed then either it is a value or we can take another step and evaluate it to a
value. The safety theorem implies that well-typed terms cannot get stuck!

We are rewriting our evaluator into a type-preserving one as follows. We distinguish between
well-typed terms and well-typed values.

% Types % Typed expressions
tp: type. term: tp -> type.
bool: tp.
nat : tp. true : term bool.
false : term bool.
% Values switch: term bool -> term T -> term T
value: tp —-> type. -> term T.
v_zero: value nat. z : term nat.
v_succ: value nat -> value nat. succ : term nat -> term nat.
v_true: value bool. pred : term nat -> term nat.
v_false: value bool. iszero: term nat -> term bool.

Then we can implement the big-step semantics without any explicit error handling for stuck
expressions! We are statically guaranteed that we can never encounter an ill-typed expression
which would lead to a stuck state.

receval : [ |-term T ] > [ |- value T] = fan m => case m of
| [ |- true 1 => [ |- v_true ]
| [ |- false ] => [ |- v_false ]
| [ |- switch T1 T2 T3 ] => (case eval [ |- T1 ] of
| [ |- v_true ] => eval [ |- T2 ]
| [ |- v_false ] => eval [ |- T3 ]
)
| L I-z1=>1[1- v_zero ]
| [ I-succ N] =>1let [ |-V]=eval [ |[-N]1in [ |- v_succ V ]
| [ |- pred N1 => (case eval [ |- N ] of
| [ |- v_zero ] => [ |- v_zero ]
| [ |-v_succ V] =>1[1[-V]
)



This function is type-preserving and will always produce a proper value! Hence, it is a much
better (and much shorter and more efficient!) implementation of the big-step semantics. Because,
we distinguish between values and expressions and in addition make sure that types are preserved,
pattern matching on the result of a recursive call eliminates any need to handle non-meaningful
results or stuck states.

3.2 Existentials

When you gain more experience with dependent types, you quickly realize that we often want to
have more expressive invariants than simply that the length of a list is preserved. For example, let’s
write a filter function: filter will keep all elements form a list which satisfy a given property and will
drop all elements which do not satisfy the property. Consequently, the length of the list we return is
less or equal to the length of the list we started with. We begin by implementing a function, which
simply says that given a list of length N, filter will produce some list of length M without stating the
relationship between N and M. We’d like to say something like this:

rec filter: [ |- 1list N] -> ([ |- tp 1 -> [ |- yes_or_no 1)
-> exists M::[ |- nat ] . [ |- list M ]

However, supporting existentials is known to lead to many difficulties; luckily, there is an easy
way to work around it: every existentially quantified type can be in fact turned in a universally
quantified type! This is a convenient trick to know. We hence first define a type

exists_smaller_or_equal_list: type.

smaller_or_equal_list : list M
-> exists_smaller_or_equal_list.

The constructor exists_small_or_equal_list is a new type which we introduce using the key
work type. It has one constructor, called smaller_or_equal_list which takes in one argument: a
list (and implicitly also its length).

Then we can write the filter function as follows, keeping yes_or_no as above:

rec filter: [ |- list N ] -> ([ [-tp ] -> [ |- yes_or_no 1)

-> [ |- exists_smaller_or_equal_list ] =
fnl=>fn f => case 1 of
| [ I-nil ] => [ |- smaller_or_equal_list nil ]

| [ |- cons HT] =>1let [ |- smaller_or_equal_list T’ ] = filter [ |- T ] £ in
(case £ ([ |- H]) of
| [ |- yes ] => [ |- smaller_or_equal_list (cons H T’) ]
| [ |I-no ] => [ |- smaller_or_equal_list T’ ]

)

Note the actual size of the list we return is an implicit argument to smaller_or_equal_list and
we don’t really see it. If we would like to see it, we can give the constructor smaller_or_equal_list
the type: {N:nat}list N -> exists_smaller_or_equal_list . Here we state that we pass to
smaller_or_equal_list two arguments, the first argument N denoting the length and the second
the actual list of length N.



3.3 Programming with proofs

The filter function, we just wrote, does not quite express what we want: namely that the list we
produce will be smaller or equal to the list we have started with. So, how can we achieve to state
this additional information?

Once we have dependent types, we can use it to express when a natural number is smaller or
equal to another natural number. This information can be directly represented as follows:

leq: term nat -> term nat -> type.
le_z : leq z N.
le_s : leq N M -> leq (succ N) (succ M).

Here, leq is a type which is indexed by two natural numbers. We use the keyword type to
declare it. There are two constructors of this type called 1le_z and le_s. Intuitively, the type of
these two constructors describe the relationship of the two natural numbers. We can think of these
constructors as encoding two inference rules describing when a natural number N is smaller or
equal to M.

leq M N 1
leq z N le_z leq (succ M) (succ N) °-

S

So, the constructors 1le_z and le_s allow us to represent derivations or proofs that a number is
indeed smaller than another number. For example the derivation below

1
leq z (succ z) -2

leq (succ z)(succ (succ z)) le_s 1
leq (succ (succ z)) (succ (succ (succ z))) -5

can be simply represented as an object 1le_s (le_s le_z). Let’s look at the types:

A little lemma One useful lemma is thatif [ |- 1leq M N ] ,then [ |- leq M (succ N)]. The
proof is an induction on the first derivation: [ |- leq M N ]. There are two cases we need to
consider: 1) We used have 1le_z : leq z N, then we of course also have a proof of 1eq z (succ
N) using leq_z. 2) We consider the case where we have le_s D : leq (succ M) (succ N) where
D : leq M N. By theih., we know thatE:1leq M (succ N). And therefore, le_s E : leq (succ
M) (succ (succ N)).

This little proof can be directly translated into a recursive program.

rec lemma_leq : [ |- leqMN] > [ |- leq M (succ N) ] = fn d => case d of
| [ I-1le_z] => [ |- le_z ]
| [ I-le.sD] =>1let [ |-E] = lemma_leq [ |-D ] in [ |- le_s E ]

The case-analysis in the informal proof corresponds directly to the case-analysis in the program;
the appeal to the induction hypothesis corresponds directly to the recursive call.

We have implemented our first proof! Using this little lemma, we can now attack the problem
of writing a filter function which will produce a list which is proven to be equal or smaller than the
list we have started with.



exists_smaller_or_equal_list: term nat -> type.
smaller_or_equal_list: list M -> leq M N
-> exists_smaller_or_equal_list N.

rec filter : [ |- list N ] -> ([ |- tp]1 -> [ |- yes_or_no 1)

-> [ |- exists_smaller_or_equal_list N ] =
fn 1 => fn £ => case 1 of
| [ I-nil 1 => [ |- smaller_or_equal_list nil le_z ]
| [ |- cons HT] =>1let [ |- smaller_or_equal_list T’ Prf ] = filter [ |- T ] £

in
(case £ [ |- H] of
| [ |- yes ] => [ |- smaller_or_equal_list (cons H T’) (le_s Prf) ]
| [ |- nol =>
% Prf : leq M N from which we want to conclude that leq M (succ N)
let [ |- Prf’ ] = lemma_leq [ |- Prf ] in
[ |- smaller_or_equal_list T’ Prf’ ]

The idea of explicitly constructing proofs about certain properties of the program is called cer-
tified programming. It has many applications: besides certifying that filter indeed produces a list
which is provably smaller than the input list, we can use certified programming to certify all kinds
of programs: a certified evaluator will not only return a result but also a proof of how this result
can be obtained; a certified type checker will not only say “yes” or “no” but return an actual typing
derivation as evidence that the given term indeed has a given type.

3.4 Certified programming

Certifying software is important in many settings, because the certificate (=proof) presents in-
dependent evidence that something is true. This means we do not need to trust a complicated
evaluator or type checker or inference engine, all we need to trust is a simple proof checker which
can verify that the certificate (=proof) is valid. In Beluga, proof checking corresponds to type
checking. Moreover, the certificate may act as a trail of why a certain action was taken; for exam-
ple, we can track authorization policies using dependent types, and then the certificate shows why
we have granted access to a given resource to someone. A server which grants access may want to
store these certificates, since we can then subsequently perform an audit and see why something
was allowed (or not).

Certified programming is a form of proof-carrying code where we attach to the output of a
program an actual proof certificate which shows how this result has been derived.

We will discuss here a certifying evaluator, i.e., an evaluator which will not only produce a value
but also a derivation demonstrating how this value can be derived using the rules of the big-step
semantics.

First, we implement the big-step semantics rules using dependent types. For this we define a
type family eval: term T -> value T -> type. This will in fact encode the relationship between
a term of type T and its value of type T. Although we track this typing invariant, our inference rules
themselves directly corresponds to our on-paper rules. We only show here the rules for evaluating
booleans and the switch-expression.
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eval : term T -> value T -> type.

ev_true : eval true v_true.

ev_false : eval false v_false.

ev_switch_true: eval M v_true -> eval M1 V
-> eval (switch M M1 M2) V.

ev_switch_false: eval M v_false -> eval M2 V
-> eval (switch M M1 M2) V.

To certify the evaluation we define a data-type cert_eval: term T -> type. It has one con-
structor: cert_val: {V : value T} eval M V -> cert_eval M.

We then write a function cert_eval which hastype{M :: [ |- term T 1} [ |- cert_eval
M ]. This states that all terms M of type term T there exists a certified evaluation for M, i.e. there
exists a value V:value T and a proof eval M V. Recall that we use again the trick from Section
3.2. We write the universal quantifier as { M :: [ |- term T ]}. The corresponding language
construct in Beluga which introduces M is mlam-abstraction.

rec cert_eval : {M:[ |- term T 1} [ |- cert_eval M ] =
mlam M => case ([ |- M 1) of
| [ |- true ] => [ |- cert_val v_true ev_true ]
| [ |- false ] => [ |- cert_val v_false ev_false ]
| [ |- switch T1 T2 T3 ] => (case cert_eval < . T1> of

| [ |- cert_val v_true C ] =>

let [ |- cert_val V C2 ] = cert_eval < . T2 > in
[ |- cert_val V (ev_switch_true C C2) ]
| [ |- cert_val v_false C ] =>

let [ |- cert_val V C3 ] = cert_eval < . T3> in
[ |- cert_val V (ev_switch_false C C3) ]

The term true evaluates to the value v_true and the corresponding evidence for eval z z
is given by ev_true. The case for false is similar. When we evaluate a switch-expression, we
evaluate T1. To use an expression of a universally quantified type, we apply the concrete value by
writing < . T1 >. The result of cert_eval < . T1> is a certified value cert_val V1 C. The first
case says, V1 is in fact v_true. In this case, we evaluate T2. This will produce a certified value
cert_val V C2 and we can now return the value V together with the derivation ev_switch C C2
which corresponds to a proof of eval (switch T1 T2 T3)V. The case where V1 is in fact v_false
is similar.
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4 Proofs, proofs and more proofs

We have seen already how to implement a proof as a recursive program (see Section 3.3). The
general idea of translating proofs into programs can be captured as follows:

Proof ‘ Program

Apply L.H. Make recursive call
Case analysis | Case analysis
Inversion Let-expression

To interpret proofs as programs has its origin in the Curry-Howard correspondence. Proofs-as-
programs correspondence and formulae-as-types correspondence.

Let us revisit this idea for the proof that the small-step semantics is deterministic. First, we
represent the small-step rules below:

E-IF-TRUE

E-IF-FALSE

if true then ty else t; — 1 if false then t else t; — t©

t— t/ E-IF
if t then t7 else t; — if t/ then t; else t;

Our judgment M — N is represented as a type. Every axiom and inference rule will be
represented as a constant.

step: term Tl -> term T2 -> type.
e_switch_true : step (switch true T2 T3) T2.
e_switch_false: step (switch false T2 T3) T3.

e_switch : step T1 T1’
-> step (switch T1 T2 T3) (switch T1’ T2 T3).

Next, we will consider the proof that the small-step semantics is deterministic. Let us recall the
proof; we state the theorem referring to the encoding of the step relation to make the translation of
it to a Beluga program more direct. Since Beluga does not support any built-in notion of equality,
we first define it as follows:

eq: term T1 -> term T2 -> type.
ref: eq TT.

The eq type family characterizes our equality judgment. There is only one way to prove that
two terms are equal, namely if the two terms are identical.
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Theorem 1 (Determinacy). If Sj:step M N1 and S;:step M N2 then eq N1 N2.

Proof. Induction on Sj.

Case Sy = e_switch_true
step (switch true T1 T2)T1

Sub-Case: S; = e_switch_true
step (switch true T1 T2)T1

eq T1 T1 by ref
S
step true T’
Sub-Case: S, = e_switch
step (switch true T1 T2)(switch T’ T1 T2)

but there is no rule which could have derived step true T’; hence this is impossible

Case &)= e_switch_false
step (switch false T1 T2)T2

Similar to previous case.

/
S]
step T T’
Case &= e_switch
step (switch T T1 T2)(switch T’ T1 T2)

Sub-case: S; = e_switch_true
step (switch true T1 T2)T1

But this now means that T = true, and hence S/ :step true T’. But there is no rule which
could have derived S{; hence this is impossible.

S
step T T’
Sub-case: S; = e_switch
step (switch T T1 T2)(switch T’’ T1 T2)

Eeq T’ T?? by ih. on S/ and S;
T =T’ by inversion on £ using ref.
eq (switch T’ T1 T2)(switch T’ T1 T2) (recall that T’ = T’?’) by using ref.

0
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This proof above can be directly translated into a program in Beluga; we translate the case-
analysis on the small-step rules in the proof into a case-expression which pattern matches on objects
of type step T T1 and subsequently might pattern match on objects of type step T T2. The appeal
to the induction hypothesis corresponds to making a recursive call. In the proof, we also needed
to say that for example there is no possible derivation for step true T1; to put it differently, it is
impossible to give a derivation which would end in step true T1. Since we model derivations as
dependently-typed objects, checking whether there is a derivation for step true T1 corresponds
to checking whether there exists an object of type step true T1; but there is none. The type
step true T1 is empty, and hence we have shown that it is impossible to ever construct an object
of this type. We employ the keyword impossible e in [ ] to check whether indeed the type of
the expression e is empty.

recdet : [ |- step TTL ] -> [ |-stepTT2] > [ |-eqT1T2] =
fn s1 => fn s2 => case sl of

| [ |- e_switch_true ] =>
(case s2 of [ |- e_switch_true ] => [ |- ref ]
| [ |- e_switch S1° ] => impossible [ |- S1’ ] in [ ]
)
| [ |- e_switch_false ] =>
(case s2 of [ |- e_switch_false ] => [ |- ref ]

| [ |- e_switch S2° ] => impossible [ |- 82’ ] in [ ]
)

| [ |- e_switch S1° ] =>
(case s2 of
| [ |- e_switch 822 ] =>let [ |-ref ] =det [ |-S1> 1 [ |-82 1 in [ |-
ref ]
| [ |- e_switch_false ] => impossible [ |- 81’ ] in [ ]
| [ I- e_switch_true ] => impossible [ |- S1’> ] in [ 1)

The theorem translates directly into a type in Beluga and we can check whether we have covered
all cases using Beluga’s coverage checker (use the flag +coverage).
This concludes our brief discussion of programming proofs for now.

5 Lambda Calculus

We now proceed to prove a classic theorems about Church-style simply-typed lambda calculus, type
preservation. We begin by defining our types. We let tp denote our types and tm denote our terms.
Then a function (arrow) has the type tp -> tp -> tp, and lambda terms have types tm -> tm
-> tm and tp -> (tm -> tm)-> tm for application and abstraction respectively. Finally, values
have the type value.

tp : type.
tm : type.
% Types

arr : tp -> tp -> tp.
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% Terms
app : tm -> tm -> tm.
lam : tp -> (tm -> tm) -> tm.

% Values
value : tm -> type.

We must now encode the lambda-calculus’ operational semantics. The small-step semantics is

V value P — P/ V : T value

M — M/ (s_app2)
VP — VP/ -8PP (Ax : TMx)V — MV

MP — M'P

(s_app3)

(s_appl)

To encode this in Beluga, we must introduce a step relation, standing in for the — in our
operational semantics. We can then straightforwardly implement the above semantics as follows:

step: tm -> tm -> type.

s_appl : step E1 E1’ ->

0

step (app E1 E2) (app E1’ E2).

s_app2 : value E1 ->
step E2 E2° >

step (app (lam T (\x. E1 x)) E2) (El1l E2).

The preservation theorem states that if ' t: T and t = t/, then ' -t/ : T’. What’s required to
encode this theorem in Beluga? First of all, we need a means of representating type relations, i.e.
a way of representing t : T. We do this by means of a has_type predicate. We must also encode
our type inference rules,

MEM:T =T TEPTE o Nx:ThFE: T
r-MP:T, -appP rE(A&c:hHE):T =T

(is_lam)

which can be done as follows:

% Typing
has_type : tm -> tp -> type.

is_app : has_type E1 (arr T1 T2) ->
has_type E2 T1 ->

has_type (app E1 E2) T2.
is_lam : ({x:tm} has_type x T1 -> has_type (E x) T2) ->

has_type (lam T1 (\x. E x)) (arr T1 T2).
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In is_lam, we again used Beluga’s concrete syntax for a Il-term. As for proving our theorem,
proceed by case-analysis, as in the standard on-paper proof:

% Preservation
rec pres : [ |- has_type ET] -> [ |- step E E’] -> [ |- has_type E’ T] =
fnd=fns =
case s of
[ |- s_appl S1] =>
let [ |- is_app D1 D2] d in
let [ |-D1’] =pres [ |-D1] [ |- s1] in
[ |- is_app D1’ D2]

| [ |- s_app2 V 82] =>
let [ |- is_app D1 D2] = d in
let [ |- D2’] = pres [ |-D2] [ |- 82] in
[ |- is_app D1 D2’]

| [ |- s_app3 V] =>
let [ |- is_app (is_lam (\x. (\d. (D1 x d)))) D2] = d in
[ |- (D1 _ D2)]
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